<name> Class: Honors Geometry Date: <date> Topic: Lesson 7-5 (Areas of Regular Polygons)

Definition	<u>Circumscribed circle</u> Circle that goes thru all vertices of the regular polygon.
	<u>Center of regular polygon</u> Center of the regular poly's circumscribed circle.
	<u>Radius of regular polygon</u> Segment (or distance) fm center to any vertex of regular poly.
	<u>Apothem of regular polygon</u> Perpendicular distance fm center to side of regular poly.
Theorem 7-12	Area of a Regular Polygon
	$A = \frac{1}{2}ap$ where <i>a</i> is the apothem & <i>p</i> is perimeter
Examples	1. A portion of a regular hexagon has apothem and radii drawn. Find the measure of each numbered angle. $m \angle 1 = 360/6 = 60$.
	$m \angle 2 = 60/2 = 30$.
	m/3 = 60.
	2. Find area of regular poly w/20 12-in. sides & a 37.9-in. apothem.
	Here $n = 20$, $s = 12$ and $a = 37.9$. Thus $p = 20 \cdot 12 = 240$ and
	$A = \frac{1}{2}ap = \frac{1}{2} \cdot 37.9 \cdot 240 = 4548in^2.$
	3. A library is a regular octagon. Side=18.0 <i>ft</i> . Radius = 23.5 ft . Find area of library to nearest 10 <i>ft</i> . 23.5 ft
	Hypotenuse=23.5, base=9 ($\frac{1}{2}$ the side).
	$a^{2} + 9^{2} = 23.5^{2}; a = \sqrt{23.5^{2} - 9^{2}} = \sqrt{471.25} \approx 21.7$
	$Perimeter \ p = 8 \cdot 18 = 144$
	$A = \frac{1}{2}ap = \frac{1}{2} \cdot 21.7 \cdot 144 = 1562.4 \approx 1560 ft (rounding to nearest 10 ft)$

<name> Class: Honors Geometry Date: <date> Topic: Lesson 7-5 (Areas of Regular Polygons)

4. Find area of equilateral Δw /apothem 8 *cm*. Leave answer in simplest radical form.

30-60-90 triangle. Apothem is opposite the 30 so it is the shortest side. Hypotenuse is radius (len $2 \cdot 8 = 16$). Len of the remaining leg of $\Delta = 8\sqrt{3}$. Thus a side of the triangle is $2 \cdot 8\sqrt{3} = 16\sqrt{3}$ and the perimeter is $3 \cdot 16\sqrt{3} = 48\sqrt{3}$. The area $A = \frac{1}{2}ap = \frac{1}{2} \cdot 8 \cdot 48\sqrt{3} = 192\sqrt{3} cm^2$.